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What is Magnetic RAM?
❖ Magnetic RAM (MRAM) is

• Random access: speed comparable to DRAM
• Non-volatile

❖ MRAM is byte-accessible
• No need to read or write full blocks

❖ MRAM doesn’t suffer wear
• No need for wear-leveling
• No limit on number of writes

❖ MRAM is now in production
• Freescale has been making chips for over two months

❖ MRAM is (currently) expensive
• Eventually cost comparable to DRAM
• New product -> expensive!
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Why file systems for MRAM?
❖ File systems traditionally use disk as non-volatile 

storage
• Large blocks / transfer sizes
• Expensive seeks
• Metadata size relatively unimportant

❖ MRAM provides
• Long-term storage
• Byte-addressability with low seek time
• High-speed access to complex metadata

❖ Problems:
• Cost is a major issue (≥ DRAM)
• File systems aren’t designed to take advantage of MRAM

❖ What should a file system for MRAM look like?
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What should we keep in MRAM?
❖ Memory (non-volatile or otherwise) is expensive

• Keep small items in it?
• Keep recently used items in it?

❖ Large (data) transfers don’t benefit as much from 
memory residence
• Most transfers are large and sequential
• Latency can be hidden with prefetching and writebehind 

❖ Metadata is perfect for MRAM!
• Small transfers (often a word or two)
• Still very large: about 1% of total file system size
• Reduce memory demands with new metadata structures and 

compression
• Allows the construction of richer metadata structures that 

might require non-sequential accesses



Outline
❖ Introduction to MRAM for file systems

❖ LiFS: Linking File System
• More effective searching and organization
• Made possible by MRAM’s speed

❖ Compressing metadata in MRAM
• Making the most of a scarce resource

❖ MRAM reliability techniques
• Making MRAM safe for file systems
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The problem with metadata
❖ The number of files is dramatically increasing

• Disk capacity is far larger
• Applications like to use lots of files

❖ How can we organize them?
• Directories?

- Good model for few files, but not for billions!
- Difficult for general directed graphs: files are 

typically in only one directory
• Applications?

- Many apps manage their own files
- Works (somewhat) but makes sharing difficult

6



The solution: attributes & links
❖ Extend application approach into the file system

• Provide primitives to manage the relationships
• Allow multiple apps to use the same files and links

❖ Sharing is easy
• File system maintains the relationships

❖ Searching is now possible...
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Application A Application B

File system

Search

RelationshipsAttributes



MRAM makes this possible
❖ Directed links between 

files to show relationships
❖ Links have attributes

• Express the type of 
relationship between the 
files

• Describe the link itself
❖ Lots of links means lots of 

“seeks”
• MRAM makes this fast

❖ Links are small
• MRAM has low latency

❖ Searching can be slow
• Keep the indices in MRAM
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name: bar
user: carlosm

name: x
user: elm

name: foo
user: elm,carlosm

name: bar
user: elm

elm: path = “foo/x”
carlosm: path= “foo/bar”

elm: path = “foo/bar”
carlosm: no path!



New system calls
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System Call Function

rellink Create relational link

rmlink Remove relational link

setlinkattr Set attributes on link

openlinkset Return handle to all the links 
from a file

readlinkset Get name and attributes of next 
link in the set



Implementation
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❖ FUSE: maps VFS calls 
back into user space

❖ MRAM: system memory 
locked into DRAM
• Not yet using MRAM...

❖ Custom MRAM allocator 
with fixed-size pools
• Efficient to allocate and 

free small objects
❖ Optimizations

• String table
• Full path name cache

user space

kernel space

client app user space daemon

LiFS

FUSE kernel moduleLinux VFS



Evaluation
❖ Metrics

• Traditional FS operations: compare to other file 
systems

• New FS operations: scalability
• FUSE overhead

❖ Experimental setup
• Sun workstation running Linux 2.6.9-ac11
• AMD Opteron 150 @ 2.4 GHz
• 1 GB DRAM
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Performance: Files
❖ Create a directory tree 

with empty files
• 15620 files

❖ Read all of the files
❖ File systems are “fresh”

❖ LiFS is competitive
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Performance: File Attributes
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Create / Remove Directories
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111,110 directories
LiFS outperforms ext2 with FUSE and RAM disk
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Create / Delete LiFS Links
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❖ Test on 15,620 files
❖ Processed 15,620 random 

links
❖ More attributes make 

link identification slower
• Need to traverse 

structures to identify 
desired link
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Compressing Metadata in 
MRAM
❖ LiFS promises lots of additional functionality, 

but...
❖ MRAM is expensive!

• Currently, much more than DRAM
• Eventually, costs drop to about DRAM costs

❖ Important to save space in MRAM if possible: 
compress metadata
• Reduces MRAM requirements
• May improve speed by reducing the amount of data 

moved
• Byte-accessible MRAM makes this feasible
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Metadata in Unix
❖ Metadata is stored in 

inodes
• Timestamps
• Ownership
• File size
• Link count

❖ Directories point to 
inodes
• Inodes themselves don’t 

contain names
❖ Total size is about 54 

bytes
• Times, size are 64 bit 

fields

Protection mode Link count

Size

Block count

Create time

Access time

Modify time

User ID
Group ID

Generation
Flags
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Compressing metadata
❖ Most metadata is compressible

• Integers have small values (link count, size)

• Times can be expressed as offsets

• Permissions can be table-based
❖ Compression is effective

• 15–20 bytes per inode on typical file systems (factor of 2.5–3.5)

• Inodes are variable-sized: compression rate varies
❖ Can this be used in a real file system?
❖ How does it affect performance?
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Inodes and file data
❖ Fields in the inode are gamma compressed

• Small numbers compress very well
• Timestamps are encoded as deltas from earliest time

❖ Permissions are table-based
• Table contains all unique combinations of <user ID, group ID, 

permissions>
- Most common combinations stored early in the table

• Location in table of this inode’s permissions is gamma-
compressed

• Table could easily be extended to handle ACLs…
❖ File data stored in compressed blocks

• Linked list of block pointers
• Random seeks not slow: pointer chasing is in RAM
• Hybrid on-disk / MRAM-based system will need some minor 

changes
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Separation of MRAM and DRAM
❖ Most memory-based file systems simply use the 

caching structures as “permanent” storage
• Very fast: almost no copying
• Inefficient: caches designed for very fast lookup at 

the cost of higher memory usage
• Unsuitable for MRAM / DRAM systems

- Must build the whole system from MRAM
- No way to “start clean”

❖ MRAMFS explicitly copies from non-volatile 
memory to DRAM
• Metadata and data copied back and forth
• Can be slower for large operations
• May be more reliable: fewer code points where 

permanent store is accessed and modified
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Postmark benchmark results

All file systems in main memory
All file systems faster than disk-based

Taller bars ➙ faster performance
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Postmark results
❖ All of the file systems run in-memory

• Ext2 slowest by far: sequential directory handling
• JFS very fast
• MRAMFS comparable to ReiserFS
• MRAMFS slightly slower than XFS, JFFS2

❖ All but JFFS2 are uncompressed
• Memory usage higher by a factor of about 3
• JFFS2 compresses blocks: not as efficient for inodes

❖ Compressed inodes faster in MRAMFS!
• Less metadata copied: faster performance
• Compression can provide speed increase by avoiding 

accesses to (relatively) slow DRAM
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Compression reduces MRAM 
demand
❖ File systems will run much faster with non-volatile 

memory
• Don’t need to read metadata from disk
• Don’t write metadata back to disk
• Fast access to parts of an inode

❖ Compression of metadata can reduce memory usage and 
thus cost
• Factor of 2–3 or more
• May save time, too: less data movement between (relatively) 

slow main memory and cache
❖ Alternate file structures can make efficient use of 

MRAM and other non-volatile memories
• Relatively small allocation chunks
• Simple, reliable file system design
• No need for complex structures that may introduce bugs
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Making MRAM file systems safe
❖ MRAM advantages

• Fast metadata access
• Richer metadata structures
• Reduces sync and transfer overhead 
• File system log for fast recovery
• Fast, on-line consistency checking

❖ MRAM disadvantages
• Wild writes from buggy software 

- Potentially much less “control” than with disk-based 
file systems: no centralized I/O access routines

• Bit flips on MRAM
❖ How can this corruption can be prevented?
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Solution: Two-Level Approach
❖ Attack the problem on multiple levels

• Guard against memory corruption due to OS mistakes
• Check file system operations to make sure that 

they’re correct

❖ Memory consistency
• Page-level write protection
• Error Correcting Codes (carefully chosen)

❖ File system consistency
• Log/periodically check structure changes
• On-line checks (log replay)
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Design: Protected NVRAM
❖ MRAM is partitioned into regions (unprotected/protected)
❖ Protected region

• Collection of (data, parity)-blocks
• Write protection at page-level (4KB)
• Each (data, parity)-block is a codeword

❖ EVENODD as ECC
❖ Requires systematic encoding

Data

Data

Parity

Protected page

Each cell represents

an encoded block

MRAM
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Design: Mapping Data to 
EVENODD

Data block EVENODD matrix

Addresses

A
d

d
re

s
s
e

s

Parity (ECC)

❖  Visualize the data block as a 1D array mapped to 
2D array 

❖  Can tolerate any one column error (bursts)
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Write Algorithm: identify 
location

Step 1: Identify address and write size

Data Page Parity Page

write <addr, data, size>
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Write Algorithm: copy to scratch
Step 2: Copy corresponding data/parity 

sections out to “scratch”

Scratch

Data Page Parity Page

Copy to scratch
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Write Algorithm: update in 
scratch area

Step 3: Write change in scratch region, compute parity

Scratch

Data Page Parity Page

Write modified data

Compute and 

write parity
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Write Algorithm: write back 
changes
Step 4: Unlock pages and write changes (vulnerable)

Scratch

Data Page Parity Page
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Write Algorithm: check writes

Step 5: Lock pages and check for errors

Data Page Parity Page
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Design — Transaction Log
Transaction Log State Table

inode number
inode state

Created for 
each fs call

Each transaction may 
consist of multiple 

operations on 
multiple inodes 

T2 Tn

# ops OPj•••

T1 •••

ID OP data

OP1

Index State

<ID1> S(ID1)

<ID2> S(ID2)
••• •••

<IDk> S(IDk)
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Consistency Checking
Transaction table (constructed from log)

Pending inode List Files that have NOT been checked

Clustered log entries

2 3 1 7

1 1 1

2 2 7

3
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Consistency Checking 
Algorithm
❖ Initialize new log and state table
❖ Insert entries into transaction table and pending 

list
❖ For each inode on the pending list

• If entry exists in “live” state table
- Get next inode 

• If entry does not exist in the “live” state table
- Fetch inode state from the “old” state table
- Replay all ops in the transaction table
- Compare replayed inode to “live” inode 

• Inconsistency if replay does not match “live” inode
❖ Requires O(1) lookup and replaying operations
❖ Block checks on NVRAM
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Prototype Implementation
❖ Implemented in LiFS
❖ Implemented protected regions in MRAM 

allocator
• Required additional calls in the interface
• mprotect
• EVENODD 

❖ Logged metadata operations in LiFS calls
• All except extents and xattrs

❖ Implemented On-Line Consistency Checker
• Currently outside of LiFS, but can read LiFS log
• Currently builds structures outside of protected area
• Persistent structures can be stored in protected 

area
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Prototype Performance
❖ Setup 

• 200 MB protected “MRAM” region
• LiFS running through FUSE
• EVENODD(96,64) and EVENODD(288,256)

❖ Fault Tolerance
• Inject faults into protected region
• Aggressively spawn threads that illegally write to region
• Inject faults while performing valid writes to the region 

❖ Raw write performance
• Gives overhead for each prototype component 

❖ File system write performance
• Use a metadata write-centric workload

❖ Consistency Check Latency 
• Use same write-centric workload
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Performance: Fault Tolerance
❖ Targeted entire 200 MB region

• Performed 250,000 16-byte writes
• Injected invalid writes while running workload

❖ Roughly 10,000 invalid writes were injected
• 180-237 injected writes escaped page protection  
• 89-94% of these are caught by the EVENODD
• Why not 100%?  

- Injected writes over-written by valid writes
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Performance: Raw Writes
❖ Most of the time is spent 

in mprotect
• Mprotect: system call to 

protect memory
❖ Takes roughly 3 seconds 

to perform 250,000 
writes
• “Block” writes: small 

writes coalesced
❖ Without mprotect the 

same workload takes 1 
second

mprotect
64%

decode
18%

encode
15%

structure
3%

mprotect decode
encode structure
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File System Performance with 
Consistency Checking
❖ Create 100 directories
❖ Write 100–500 files to 

each directory
❖ Create links for each file
❖ Perm changes to file 

metadata
❖ Tests run with

• Full protection
• No mprotect
• Only logging
• Vanilla LiFS
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Performance: On-Line Check
❖ Generated a log in LiFS

• Same as latency workload (100 dirs/100-500 files)
• Created 120,500–2.1 million operations

❖ Ran consistency checker outside of LiFS
• Latency from less than 1 to 5.5 seconds



Related Work
❖ Queryable file systems

• Expressive queries
• Links don’t have attributes (only files)
• Advanced commercial file systems

- Spotlight (Apple)
- ZFS (Sun)
- WinFS (eventually...)

• Somewhat slow: information on disk
❖ In-memory file systems

• Lack advanced file system features (links, searching)
• No compression
• Often treat memory as a block device (flash RAM)
• Database research on utilizing persistent memory

❖ The Semantic Web
42
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Future Work
❖ Push LiFS with these mechanisms into the kernel
❖ Distributed metadata using LiFS-based models
❖ RAID algorithms on multiple banks of MRAM
❖ Explore different approaches to data structures 

and compression
❖ Coding

• Incorporate logging code for extents and x-attrs
• Integrate the consistency checker into LiFS
• Experiment with other ECCs
• Allow communication between the MRAM-level 

mechanisms and the consistency checker
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Conclusions
❖ MRAM promises big improvements for file 

systems
• Richer metadata
• Higher performance
• Lower space requirements
• Higher reliability

❖ Linking file system provides functionality 
currently unavailable

❖ Compression ensures that the metadata fits in 
MRAM

❖ Error correction and online consistency checking 
keep the metadata safe



Questions?
❖ Thanks to our sponsors:

• National Science Foundation
• SSRC industrial sponsors
• LANL 

❖ Thanks to MRAM team members
• Carlos Maltzahn, Scott Brandt
• Sasha Ames, Nikhil Bobb, Karl Brandt, Nate Edel, 

Kevin Greenan, Adam Hiatt, Owen Hofmann, Alisa 
Neeman, Mark Storer, Deepa Tuteja

❖ http://www.ssrc.ucsc.edu/proj/scm.html
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